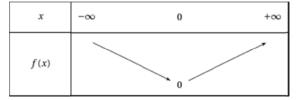
IV. Fonctions de référence

a. La fonction $x \mapsto x^2$

<u>Définition</u>: La fonction définie sur \mathbb{R} , qui à tout réel x associe son carré x^2 est appelée fonction carré.

i. Sens de variation de la fonction carré

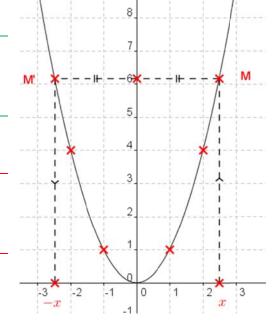
<u>Propriété</u>: La fonction $f: x \mapsto x^2$ est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$



Conséquences:

- Pour tous nombres réel positifs : a < b est équivalent à $a^2 < b^2$.
- Pour tous nombres réel négatif : a < b est équivalent à $a^2 > b^2$.
 - ii. Représentation graphique de la fonction carré

<u>Définition</u>: Dans un repère orthogonal d'origine 0, la représentation graphique de la fonction carré est appelée parabole de sommet 0.



91

Propriété: Dans un repère orthogonal, la parabole \mathcal{P} représentant la fonction carré est symétrique par rapport à l'axe des ordonnées.

b. Fonction polynômes de degré 2.

i. Définition et représentation graphique.

Activité d'introduction sur géogébra : exercice 52p80.

<u>Définition</u>: On appelle fonction polynômes du second degré, ou trinôme, toute fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont trois nombres connus, et $a \neq 0$. Il s'agit de la forme développé de f(x).

Exemples:

$$f(x) = -6x^2 + 2x$$
 ($a = -6$, $b = 2$ et $c = 0$)

g(x) = 2(x+1)(x-2) est un trinôme du second degré, car si l'on développe cette expression on obtient : $g(x) = 2(x+1)(x-2) = 2[x^2-2x+x-2] = 2x^2-2x-4$ (a=2,b=2 et c=-2)

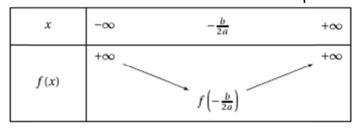
<u>Propriété</u>: Dans un repère orthogonal d'origine O, la représentation graphique d'une fonction polynôme du second degré est une parabole de sommet S.

ii. Variations des fonctions polynômes de degré 2

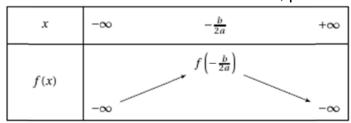
Comme nous avons put le constater lors de l'activité d'introduction ;

<u>Théorème</u>: Les fonctions polynômes du second degré varie selon le signe de a, on a 2 cas :

- Si a>0: la fonction est décroissante puis ensuite croissante, le tableau de variation est :



- Si a < 0: la fonction est croissante, puis décroissante le tableau de variation devient :



iii. Sommet et extrémum

Une conséquence immédiate du théorème précédent :

Le sommet S de la parabole a pour coordonnées : $S\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$.

- Si a>0, la fonction polynôme admet un minimum : $f\left(-\frac{b}{2a}\right)$.
- Si a < 0, la fonction polynôme admet un maximum : $f\left(-\frac{b}{2a}\right)$.